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Abstract—The Rayleigh-Ritz technique, using clamped beam ecigen functions, bas been employed to
determine the upper bounds for the cigen values for a clamped orbtotropic plate. The decomposition
technique after Bazely and Fox has been used to estimate the lower bounds for the first few natural
frequencies. The estimates for the upper bounds have been evaluated for all modes by not imposing any
restriction on the symmetry conditions. Variations of the first two natural frequencies for various rigidity
and aspect ratios which can be of some use to the designers are presented. Also the upper and lower
bounds for the first few natural frequencies are tabulated. Comparison of the results for special cases with
other reported data have been made whenever such results are available.

1. INTRODUCTION
Unlike rectangular plates with two opposite edges or all the four edges simply supported, a
plate with clamped boundaries does not have an ‘“‘exact™ or closed form solution. Thus, a
considerable amount of work has been done to evaluate the natural frequency(ies) using
approximate technigues. The Rayleigh-Ritz energy method has proven to be the most popular
technique with considerable success demonstrated by numerous works.

Hearmon([1] investigated the frequency of vibration of rectangular wood and plywood
plates. He obtained approximations for the fundamental natural frequency of speciglly ortho-
tropic, rectangular plates with clamped edges using the Rayleigh method. His assumed
deflection expression consistent with the clamped boundaries, consisted of a product of similar
fourth order polynomials in the x and y directions. He further modified his results using a Ritz
modification with a two term deflection function. Reddy and Rajappa[2] obtained the same
fundamental frequency expression by solvma certain interconnected beam systems with elastic
equivalence to orthoropic plates and various boundary conditions. They used Galerkin's
formulation of the variational principle. Lekhnitski[3] assumed products of trigonometric
functions for the deflection and used the Rayleigh method to evaluate the natural frequency of
orthotropic plates. His results gre somewhat higher than Hearmon's results. Iyengar and
Jagadish[4] obtained numerical results for the free vibration of clamped orthotropic plates and
reported more accurate frequencies for various rigidities than Kanazawa and Kawai[S5].

Huffington [6) and Young[7] considered the modal patterns in rectangular orthotropic piates
and reported the existence of non-parallel nodal lines for clamped orthotropic plates.

Dickinson[8] considered the vibration of a rectangular plate with various boundary condi-
tions. He extended the sine series solution for isotropic plates developed by Dill and Pister[9]
to an orthotropic case. Dickinson’s first three natural frequencies are lower than Hearmon's
upper bounds.

Bert and Mayberry[10] employed the Rayleigh-Ritz technique and used beam functions to
determine the natural frequencies of clamped laminated anisotropic plates. They have
compared the theoretical results with that of experimental ones. Lin and King[11] studied the
free vibration of unsymmetric cross ply and antisymmetric angle-ply plates. They have used an
approximate technique due to Bolotin to obtain the natural frequencies.

Bazely et al.[12], computed the lower bounds of the first fifteen frequencies of a rectangular
isotropic plate with clamped edges by using a decomposition technique.

This technique developed by Bazely and Fox[13] decomposes the governing differential
equation to two or more equations that are individually resolvable. However, Bazely, Fox and
Stadtler’s treatment is limited to a particular symmetry class.
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612 Roy D. MARANGONI ¢f al.

In the present work, an attempt has been made to extend the Bazely et al. method to
orthotropic plates with clamped edges but without symmetry limitations. In addition, as
opposed to other solution methods providing only approximate results, both upper and lower
bound estimates are presented in order to accurately bracket the true eigeavalue for the first
few natural frequencies of each case considered. This bracketing technique permits the resuits
to be accepted with a much higher degree of confidence than other single valued approximation
solution methods.

2 THEOQORY
2.1 Equation of motion

For a freely vibrating clamped “specially orthotropic” thin plate, (Fig. 1) the equation of
motion is given by(14]

'w a‘w a'w Pw
D.-—;-” +D,—-;a +HT’3 % ph—-t-,--o Q.1
with the boundary conditions

w=%‘-:-=0 at x=0,4q

w.%‘y!,o at y=0,b 2.2

H = D,y + Dy, + 4D,
D, = E’[12u
D, = Ei* 124
Dy, = Goh*12
m=1=vory
and p; », D being the mass density, Poisson’s ratio, and rigidity respectively.
The solution to the equation of motion can be written as
w(x,y,t) = $(x,y) cos (wt + ). (2.3)
Substituting this in equation (2.1), the equation of motion reduces to

a* a* a*
D.2%+ D,-a-,#+ HEF%’—M’& =0. 2.4)

Q a x
Fig. 1. Coordinate system used in analysis.
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Letting X = x/a and Y = y/b, eqns (2.4) becomes

4
D-—'ﬁ+—*ay 4=ty — phay = 0 @.5)

and eqn (2.2) can be written as

$0,Y)=0, ¥(1,Y)=0
¥(X,0)=0, X 1N=0

W i ay
FOV=0, o1, V)=0
Hxo=0, Hxn=o 2.6)
Now defining A = phw?a*/ D,, the governing equation becomes
‘v H EX D, 'y
ﬁ*““b}'( ) X7 D, G ) —A¢=0. @7

Equation (2.7) along with eqn (2.6) constitute the eigenvalye problem for an orthotropic plate
with clamped edges.

2.2 Rayleigh-Ritz method for upper bounds

Let
al
L=+ Paxhapt O @8
where
2 D 4
P= D Q= D

The above operator L can be easily shown to be self adjoint and positive definite. The concept
of this method consists of determining the stationary values of the Rayleigh quotient

R(¢)=-(§-’;-f)— y 29

where the parenthesis refer to the inner product of the arguments. The inner product is defined
here as

1 pl
(u,o)=I° L uv dX dY.
Jhe solution is not for all admissible functions #, but for the linear manifold spanned by an
arbitrary, finite set of linearly independent functions [¢] satisfying the geometric boundary

conditions of the operator L[15]. The problem then consists of finding the functions ¥ of the
form

v=3 ah 2.10

Substituting this in eqn (2.9), the equation in matrix form becomes

(. Lénag) = Al(#s ¥)liay). (211



614 Roy D. MARANGON! ef al.
By choosing a set of orthonormal functions, {¥} eqn (2.11) reduces to

(%, Lép)lia)) = k[1N{a;]. (2.12)
The function ¢ can be expressed in terms of two separate beam functions as
¥ = Apdi(X)n(Y). 2.13)

The Ay term is a numerical coeflicient whereas ¢ is the normalized eigenfunction of an
unloaded isotropic clamped beam and is given by[16]

@n = cOSh €,2 — COS €,2 — E,,(sinh €,2 — sin €,2) 2.14)
where E,, is the normalizing function given by

E"Scosht..-cou..
sinh ¢,, —sin e,

and e, are the eigenvalues of the clamped beam differential equation
Coe_ otgn=0 @.19)

determined by the roots of the characteristic equation
coshe¢cos = 1. (2.16)
To enhance the handling of the required inner product, the eqn (2.13) will be redefined as
W = Ale(X)e" (). Q.17

ot L= [ [ [wE b+ utp il s ol ¥ axay

1 p1 421
=gt x_4d 4 fm i ko
"”’LL*a hrdXaY + Qe for i=j k=1

Now

1,1 x a“ ] . .
=p£L¢,a 44X aY for imj kel @2.18)
Using the boundary conditions and integrating by parts, eqn (2.18) becomes

W, Lg) = ¢,‘+:£?[R(i) - SGi, )]+ [R(k) - Stk k)] + Q&* for i=jk=1 (219)

= ;z(;;f;:;,l;lk(i) = SG, DUSk, - S(L k)] for i=j k#l (2.19b)
- :- 2556, - SG, DIRG6) - Sk k) for ij k=1 @.19)

- P PR _ , L
@D =y SN - SISk D-SE b for i#j k4l (219d)
where

rem=[(52) ]

=1
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S(m, n)= [9‘-:%"- ‘%ﬁ'—]o].

r4 4

and

Equations (2.19) represent the coefficient matrix for the standard eigenvalue problem
formulation defined by eqn (2.12). The solution of this eigenvalue problem provides the upper
bounds for the natural frequencies of a clamped orthotropic plate.

2.3 Decomposition method for lower bounds
This method requires the operator L to be decomposable into a sum of quadratic forms(13].

L=3 4, @2.20)

such that each eigenvalue problem
AW —-ABy=0 (2.21)

is explicitly resolvable. Each set of eigenvalues for a given variation probiem a, designated as
A®, are taken 1o be enumerated in increasing order, as

PYLE P VLK 9 PO A , a=1,2,3,....M. (2.22)
The lower bounds of the true eigenvalues are designated by A" and depend on the M-tuple »
of positive integern n,,
R=(ny, Ny ..., AN).

The lower bounds are obtained in order from solutions of the symmetric eigenvalue problem,

[A®1NN-[D] 2.23)
where

M
At= 2. Arg+s
a=

. M
and [D] of the order |n|(= % n,) has the form

D"p%. . . . D™
D" p®
D=| .
... D,

The submatrices of D are obtained from the expression
el S (PHIRED W b (/RN 1o TPT AR Wg 1) (224

The lower bounds calculated by this method increases monotonically with each index n, and
satisfy the inequalities

M
TACEL €AY, p=12,..... iml

anl
and give bounds according to

A€M, u=12...... s Iml. 2.29)



616 Roy D. MARANGONL et al.
Equation (2.7) can be decomposed into two parts as

¥ 210‘ 3‘4’1_ _
XD by M =0 @26)

H a* 3
D, pax%y? Ak =0 @2
The boundary conditions for the above two equations are obtained from eqn (2.6).

Using separation of variables, and eqn (2.15), the eigenvalues and eigenfunctions of eqn
(2.26) can be shown to be

4

A= 6." +%x“’bl1 ¢;‘ (2~28)

and
¥ = oy 2.29

and that of eqn (2.27) to be
= Hb® ;2 . =
Az -b-:;gm n‘w*, m=1,23,...

n=123,... (2.30)

and
¥ = 2sin mwX sin nnY. (2.3

The D matrix is now constructed using the eqn (2.24) and the eigenfunctions given by eqns
(2.29) and (2.30) as
D" =g m—A") a=1,2 .32

and
D= {(Ah1= AW DA% - DY 2.33)

where

W', )= 2{;;:-:"'-51;:[1 +(—1)"(E, sinh ¢, — cosh ¢,)]

mm - )
+ o mall+ (- (B, sin g, —cos 1.

{—,—,—," Zora(l+ (- D, sinh €, - cosh )]+ oyl + (= 1)°(E, sin ¢, —~cos c.)]}; (2.34)

m=123,...
n=1,2,13,...

w and » correspond to the position in the D'? and D*' matrix.

3. DISCUSSION AND CONCLUSIONS
Figures 2-6 show that a linear correspondence exists between the fundamental plate
frequency parameter and the ratio of the material properties. The parameter A, = (phw,>a*)/D,
obtained by the Rayleigh-Ritz method increases with aspect ratio- and its dependence on
y-direction rigidity ratio D,/H becomes more significant as shown in Figs. 5 and 6. In all of
the above cases, the fundamental plate eigenvalue was associated with the first mode in both the
x and y direction.
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Fig. 2. Effect of rigidity variations on the fundamental frequency of a rectangular orthotropic clamped plate
with an aspect ratio of 0.5.
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Fig. 3. Effect of rigidity variations on the fundamental frequeacy of a rectangular orthotropic clamped plate
with an aspect ratio of 0.667.

Similar plots in Figs. 7-11 showtbeﬁnearcmespopdeneeoftheseeondebenvﬂuefor
various rigidity ratios. However, a consistent straight line relationship is not maintained for all
D,/H ratios, as shown in Figs. 8-10. Beyond a specific point, the actual plate frequency based
on the first mode in the x-direction and the second in the y-direction no longer yields the
second lowest frequency. Hence, a second straight line of a decreased slope represeiits the
second lowest plate frequency. The plot now represents the second mode in the x-direction and
first in the y-direction. These plots are sometimes useful in critical design when it is important
to know the frequency at which the mode shape flips from one to the other. The range of data
plotted in the above graphs correspond to almost all the available orthotropic materials. Also,
the linear plots in all of the above figures makes it possible to extrapolate the results.

In Table 1 the frequency parameter A,, of orthotropic, clamped square plates has been
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Fig. 4. Effect of rigidity varistions on the fundamesntal frequency of a square orthotropic clamped plate.
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Fig. 5. Effect of rigidity variations on the fundamentsl frequency of a recianguiar orthetropic clamped plate
with an aspect ratio of 1.5.

Table 1. Comparison of fundamental frequency parameter for orthotrapic square clamped plates
Meddiy Baetos __ Frequemcy Parmmecer O) 00
Dy/E Dy/8  Jagadish  Claasen  Dickinson  Basley & Fox "';;‘:f

.5 .5 1 592.8 - 1 576.1 - 1 576.7
.5 1.0 2 093.3 - 2 082.8 - 2 083,4
.5 2.0 3095.1 - 3 087.9 - 3 088.4
1.0 1.0 1 299.6 1 294.9 1 294.9 1 294.9 1 295.1
1.0 2.0 1 800.5 - 1 797.5 - 17977

#Results based on Rayleigh~Ritz Method.
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Fig. 6. Effect of rigidity variations on the fuadamental frequency of a rectangular orthotropic clamped piate
with an aspect ratio of 2.0.
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Fig. 7. Effect of rigidity variations on the second natural frequency of a rectangular orthotropic clamped
plate with an aspect ratio of 0.5.

compared with special cases presented in the literature. Although Dickinson did not use an
upper bound technique (his value increases with increase in function size) the values caiculated
in this study are within 0.04% of the reported results. Also all the results appear to be more
accurate than those of Jagadish and Iyengar. Table 2 shows the comparison between the
calculated frequency parameters and previously reported values for the first five modes of a
special orthotropic square plate. In general, the calculated values for a plywood plate appear to
agree well with Dickinson’s and appear to be more accurate than Hearmon's.

Table 3 compares the upper and lower bounds of isotropic square clamped plates. The upper
bound results of the present work appear to be better than those of Young and comparable to
those of Bazely et al. Since no symmetry conditions were imposed, the second and third mode
frequencies have also been reported in this study. The lower bounds are fairly close to the
upper bounds indicating that the decompositional technique can be utilized with a complete
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Fig. 8. Eftect of rigidity variations on the second natural frequency of a rectangular orthotropic clamped
plate with sn aspect ratio of 0.667.
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Fig. 9. Effect of rigidity variations on the second natural frequency of a square orthotropic clamped plate.
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Fig. 10. Effect of rigidity variations on the second natiwal frequescy of a rectangular orthotropic clamped
plate with an aspect ratio of 1.5,
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Fig. 11. Effect of rigidity variations on the second natural frequency of a rectangular orthotropic clamped
plate with an aspect ratio of 2.0.

Tabie 2. Frequency of free vibration for orthotropic square clamped plate (DJH = 1.543, D,JH = 4.810)

Mode Fre Pari [14¢ e

Ro. Hearmon Dickinson Vork®
1 2 272.7 2 254.5 2 254.5
2 6 186.7 6 087.4 6 086.3
3 13 825. 13 070. 13 069.
4 - 17 720. 17 ns.
5 18 244 18 366. 18 351.

*Results based on Rayleigh-Ritz Method.

Table 3. Compatison of the frequency psrameters of the first four modes of an isotropic square clamped
piate
“Aspect
Racio ————Upper Bounds — lover Bounds
A/B Mode Young Bazley & Fox llo"t.kl*: Bazley & Pox ""m.'
1.0 1 1 295.2 1 .29.9 1 295.1 1 294.3 1 286.7
2 5 389.0 - 5 385.3 - 5 185.0
3 11 722. - 11 674. - -
4 17 329. 17 313. 17 Al. 17 293, -
667 1 - 729.3 729.7 729.0 721.9
2 - - 1 739.8 - 1 655.3
3 - - 4 373.2 - -
4 - 4 425.3 4 430.3 4 417.1 -
50 1 - 604.1 604.2 603.9 $99.1
2 - - 1 011.8 - 956.4
3 - 2 004.5 2 022.8 2 000.3 -
4 - - 3 991.6 - -

621

*Results based on Rayleigh-Ritz Method.
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Table 4. Bounds for eigenvalues of orthotropic rectangular clamped plates

Bound Estimatea
Dy/H by/u A/B Order Upper Lower
1.543 4.810 © 0.5 1 666.4091 646,1528
2 1422,3830 1391.4939
1.0 1 2254,5420 2253.6489
2 6086.3035 -
1.5 1 8832.4839 8828.5156
2 13329.83 -
2.0 1 26227.98 26195.055
2 31651.67 -
4.310 0.305 0.5 1 518,9465 516.3428
2 579.9746 565.2004
1.0 1 603.4624 599.6765
2 1024.4738 974.0867
1.5 1 833.5441 828.4370
2 2434.6102 2327.4282
2.0 1 1341,0440 1320.3628
2 5379.3524 -
1.0 2.0 0.3 1 636.6271 634.9131
2 1251,9036 1201.0317
1.0 1 1797,6569 1787.2656
2 5903.1162 -
1.5 1 6228.9706 6208.5273
2 11354.91 -
2.0 1 17677.94 17593.383
2 24223.39 -
1.0 3.0 0.5 1 668.4210 668.2830
2 14 90.6255 1442,0378
1.0 1 2298.9819 2296.4839
2 6410.9795 -
1.5 1 8763.9808 8742.6250
2 13898.00 -
2.0 1 25687.92 25602.906
32242.07 -
2.0 1.0 0.5 1 552.4357 549.8081
2 756.9810 728.4688
1.0 1 898.8284 893.6333
2 2951.5581 2842.7612
1.5 1 2100.3580 2091.9373
2 6308.0068 -
2.0 1 5093.0168 5079.2969
2 10015.23 -
2.0 3.0 0.5 1 584.5791 584.4226
2 996.4461 971.3010
1.0 1 1400.7365 1398.5220
2 5109.1492 -
1.5 1 4636,1401 4635.3945
3 2 8858.4351 -
2.0 1 13103.92 13088.316
2 18042.77 -

beam eigonfunction for the orthotropic plates. Aithough utilization of only six terms of a
complete set of characteristic beam functions yielded accurate results for the upper bounds,
corresponding agcuracy was not achieved for the lower bounds. Difficulties attributed to
squaring tangent terms in the actyal computation of the lower bound values necessitated the
limiting of the beam eigenfunctions to two. The instabilities are believed to be associated with
evaluating the trigonometric functions, especially the tangent near /2.

The bounds for clamped orthotropic plates for various rigidity and aspect ratios have been
ta::atcd in Table 4. It is seen that the range for the ‘“‘exact” eigenvalue varies from 0.02 to
3.6%.

Thus it appears that a combination of the Rayleigh-Ritz method for upper bound deter-
mination and the decomposition technique for lower bound estimation is a valuable procedure
for the bracketing of the true natural frequencies of a wide class of vibration problems where
an explicit closed form solution is impossible.
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